Purification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A).

نویسندگان

  • Ya Hui Hung
  • Meredith J Layton
  • Ilia Voskoboinik
  • Julian F B Mercer
  • James Camakaris
چکیده

The MNK (Menkes disease protein; ATP7A) is a major copper- transporting P-type ATPase involved in the delivery of copper to cuproenzymes in the secretory pathway and the efflux of excess copper from extrahepatic tissues. Mutations in the MNK (ATP7A) gene result in Menkes disease, a fatal neurodegenerative copper deficiency disorder. Currently, detailed biochemical and biophysical analyses of MNK to better understand its mechanisms of copper transport are not possible due to the lack of purified MNK in an active form. To address this issue, we expressed human MNK with an N-terminal Glu-Glu tag in Sf9 [Spodoptera frugiperda (fall armyworm) 9] insect cells and purified it by antibody affinity chromatography followed by size-exclusion chromatography in the presence of the non-ionic detergent DDM (n-dodecyl beta-D-maltopyranoside). Formation of the classical vanadate-sensitive phosphoenzyme by purified MNK was activated by Cu(I) [EC50=0.7 microM; h (Hill coefficient) was 4.6]. Furthermore, we report the first measurement of Cu(I)-dependent ATPase activity of MNK (K0.5=0.6 microM; h=5.0). The purified MNK demonstrated active ATP-dependent vectorial 64Cu transport when reconstituted into soya-bean asolectin liposomes. Together, these data demonstrated that Cu(I) interacts with MNK in a co-operative manner and with high affinity in the sub-micromolar range. The present study provides the first biochemical characterization of a purified full-length mammalian copper-transporting P-type ATPase associated with a human disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Menkes protein copper-binding domains and their role in copper-induced protein relocalization.

Menkes disease is a fatal X-linked disorder of copper metabolism. The gene defective in Menkes disease (ATP7A) encodes a copper transporting P-type ATPase (MNK or ATP7A) with six copper-binding domains at its N-terminus. MNK is normally localized to the trans -Golgi network in cultured cells, but relocates to the plasma membrane in the presence of elevated extracellular copper. In this study, t...

متن کامل

The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal.

Menkes disease is an X-linked recessive copper deficiency disorder caused by mutations in the ATP7A ( MNK ) gene which encodes a copper transporting P-type ATPase (MNK). MNK is normally localized pre- dominantly in the trans -Golgi network (TGN); however, when cells are exposed to excessive copper it is rapidly relocalized to the plasma membrane where it functions in copper efflux. In this stud...

متن کامل

Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool.

MNK (Menkes copper-translocating P-type ATPase, or the Menkes protein; ATP7A) plays a key role in regulating copper homoeostasis in humans. MNK has been shown to have a dual role in the cell: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper from the cell. These roles can be achieved through copper-regulated trafficking of MNK. It has previously been shown t...

متن کامل

Novel membrane traffic steps regulate the exocytosis of the Menkes disease ATPase.

The Menkes disease protein (ATP7A or MNK) is a P-type transmembrane ATPase that regulates translocation of cytosolic copper ions across intracellular membranes of compartments along the secretory pathway. In this study, we show that endogenous MNK in cultured cell lines is localized to the distal Golgi apparatus and translocates to the plasma membrane in response to exogenous copper ions. This ...

متن کامل

Molecular basis of the brindled mouse mutant (Mo(br)): a murine model of Menkes disease.

The brindled mouse mutant (Mo(br)) is the closest animal model of the human genetic copper deficiency, Menkes disease, which is presumed to be due to a mutation at the X-linked mottled locus (Mo). The mutant mice are hypopigmented and die at around 15 days after birth, but can be saved by treatment with copper before the 10th postnatal day. Menkes disease has been shown to be due to mutations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 401 2  شماره 

صفحات  -

تاریخ انتشار 2007